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Supplementary Figure 1: Si Li-a x-ray source function as measured with HOPG crystal
spectrometer and image plates.
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Supplementary Figure 2: The principal Hugoniot of Deuterium (po=0.17 g cm™) for
Sesame, QEOS and the DFT-MD results of Holst et al. The Sesame and DFT-MD curves
are used to establish limiting Hugoniot values in order to estimate uncertainty in
compression resulting from uncertainty in equation of state.
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Supplementary Figure 3: Backscattering spectra and fits using two models for ionization
potential depression (IPD). Solid curves represent the total scattering signal while dashed lines
indicate contributions from bound-free and elastic scattering only. (A) Stewart-Pyatt IPD model
for ionizations of Z=0.15 (red), 0.25 (green) and 0.5 (yellow). (B) Ecker-Kroll results for
Z=0.15 (red) and 0.25 (green). 8 eV more continuum lowering effectively results in a shift of the
bound-free scattering feature toward the elastic peak.
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Supplementary Figure 4: Temperature dependence of x-ray scattering fits. (A) Backscattering
data fit with three temperatures at Z=0.15. Very little change is seen for fits ranging from
T.=0.15-0.5eV. (B) Plasmon scattering data fit at Z=0.15 with curves corresponding to T¢=0.1-
0.2 eV. While the relative intensity of the plasmon feature drops with increasing temperature,
the spectral position remains constant.
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Supplementary Figure 5: lonic pair distribution functions gii(7) (solid) for several states along
the Hugoniot curve together with their corresponding coordination number K(7) (dashed). The
dotted line indicates the molecular peak at 0.741 A.



Supplementary Figure 6. (A) View inside the simulation box at 1000 K and 0.4 g cm™ with a
=0.0066. (B) View inside the simulation box at 4000 K and 0.6 g cm™ with a= 0.427.
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Supplementary Figure 7: Optical reflectivity in compressed D, previously measured by
Celliers et al. (green) compared with reflectivity inferred from fits to x-ray scattering data (blue).
Also shown is optical reflectivity inferred from DFT-MD simulations using the Kubo-

Greenwood formalism (red).



Supplementary Note 1: Comparison with Reflectivity Measurements

The location of the transition to metal-like behavior has previously been inferred from
measurements of optical reflectivity'. However, because the optical properties of dense
hydrogen are quite complex during transition to the conducting state, it is difficult to infer
ionization directly from reflectivity values and make a comparison to the measurements
presented in the main text. In order to compare our results with these measurements, we instead
used the Born-Mermin dielectric function corresponding to the best fit to the x-ray scattering
spectrum and calculated the index of refraction of the plasma at the laser conditions used by
Celliers et al.  This allowed us to estimate the reflectivity corresponding to the measured x-ray
spectrum. In addition, we have compared these results to reflectivities calculated within the
Kubo-Greenwood formalism™ by postprocessing the DFT-MD simulations at the points where
XRTS measurements were made. The results are shown in Supplementary Figure 7, where the
continuous line is an optical reflectivity measurement made in compressed D, using an 808 nm
laser probe, the blue points represent reflectivities inferred from the x-ray scattering fits and the
simulations are shown in red. The optical reflectivity and x-ray scattering results appear to be

consistent when compared on this basis.



Supplementary Methods:
Experimental Configuration

The experiments were performed at the Janus Laser Facility, at Lawrence Livermore National
Laboratory. The experimental configuration is illustrated in Figure 2 of the main text. A copper
target held a reservoir of liquid deuterium near 19 K with initial deuterium density of
£0=0.17+0.004 g cm™. A single laser beam drove a shock into the deuterium with intensities of
~4x10"* W ¢cm™ at the target in 2-6 ns long pulses. The beam used a phase plate to produce a
round 600 pum diameter spot on target. The forward scattering measurements were made on
deuterium shock-driven by a frequency-doubled 2 ns long laser pulse producing a wavelength of
527 nm at the target. The backscattering measurements were made operating the same laser at
the 1054 nm fundamental, leading to higher intensities on target. These shots used pulses of up

to 6 ns to sustain higher-pressure shocks in the target.

A second 527 nm beam was propagated at 90° to the drive beam, incident on a Si3Ny foil with an
intensity of 1x10"* W cm™. This beam pumped the Si Ly-« line at 2005 eV, producing a bright
x-ray source of bandwidth 8E/E=2x107, sufficiently narrow to observe small plasmon shifts at
fractional ionizations®. The probe pulse was delayed 10-20 ns after the rise of the drive beam,
allowing the shock to traverse a distance of 350 pum to reach the center of the volume accessed
by the x-ray diagnostic port. Conversion efficiency of laser energy into the Ly-a line was
measured to be 0.2%, producing approximately 4x10'? x-ray photons at the target, sufficient for

accurate single-shot measurements.

The x-rays were dispersed with Highly Ordered Pyrolytic Graphite (HOPG) crystal
spectrometers, 24 x 70 mm curved with a radius of curvature (ROC) of 107 mm. The
spectrometers operated in von Hamos geometry’ collected and spectrally dispersed the scattered
radiation onto Fuji BAS-TR025 image plates, resulting in a dispersion of 3.5 ¢V mm™ and 4 eV
instrument functions. The image plates were scanned at a resolution of 50 um. The soft x-ray
bremsstrahlung produced by the laser-target interaction was filtered by a 25 pum thick Be foil or a
layer of aluminized plastic a few um thick that was placed in front of the image plate. Of the
~4x10"? photons produced, a fraction of 7x10 photons were scattered on a typical shot,
consistent with the electron densities ~4x10%* cm™ measured at fractional ionizations.

Supplementary Figure 1 shows the x-ray source function as measured with the HOPG and image



plates.

In dynamic x-ray scattering experiments, contributions from un-shocked material can
contaminate the desired signal from the shocked sample. In our case, we note that the x-ray
aperture is sufficiently small to localize the measurement to a volume mostly constrained to the
shock front. This is further weighted by the higher scattering contribution from dense, hot
material to confine the measurable signal to the shocked matter. We performed null tests on
undriven targets to verify that there was no significant contribution from the target or unshocked
volume. In addition, the plasmon data do not have the broadening or lower energy shifts we
would expect from scattering from lower density hydrogen, and we are thus confident that our

signal is collected from the compressed volume.

The mixing of pusher material into the field of view of the spectrometer would also be an
important failure mode. However, we would expect this to be detectable as a spuriously large
electron density and as a larger total photon signal at the detector. Neither signature was evident

in our data.

Falk and coauthors have raised questions about combining VISAR measurements from a shock
front with spatially integrated XRTS in similar experiments, particularly in the presence of
gradients in plasma conditions®. While this is an important point, we note that the Falk
experiment was designed to maximize scattering signal by scattering from a large volume of the
target with an x-ray source antiparallel to the drive beam and thus including significant
contributions from coronal plasma and all other plasma conditions present. We have attempted
to control this with a narrower x-ray aperture. The Falk geometry also necessitated a design that
did not use a solid density pusher on the target surface. As a result, Falk et al. report less
uniform shock conditions than would otherwise be obtained, as well as measurable target
preheat. We have avoided this outcome with an experimental design that allows for the use of an
Al pusher. Significant variations in electron density would be expected to broaden the plasmon
signal measurably and result in a less shifted spectral feature — something we do not detect in our

data.



Deuterium Equation of State

The deuterium equation of state has generated a great deal of attention and controversy over the
last two decades. In particular, the EOS along the primary Hugoniot has been studied
extensively, with a focus on the region of maximum compressibility between about 30-200 GPa’.
The early and widely used Sesame tables® predicted a relatively low compressibility (a “stiff”
Hugoniot) while some laser experiments suggested a “softer” curve”'’. Updates to the Sesame

model'' and increasingly high resolution ab initio simulations’ have led to more recent

theoretical results between these two extremes.

Experiments at the Omega laser'? and the Sandia Z-machine'® have reported smaller differences
in the measured Hugoniot. At pressures near 45 GPa, Hicks and coauthors find approximately a
12% difference in compression between the two experimental platforms, after correcting for
differences in initial conditions and analysis. The error bars in these measurements are of a
similar order, due to the inherent challenges of impedance matching in low density targets. The
properties of quartz, typically used as an impedance matching standard in dynamic experiments,
have also been shown to play an important role. Re-analysis with an improved quartz standard
shifts the high-pressure Omega data toward lower compression and closer agreement with the Z

14
results .

For data analysis and hydrodynamic calculations, we choose the quotidian equation of state
(QEOS)" that yields compressions between the relatively stiff early Sesame curve® and a DFT-
MD curve which is softer'®. At low pressures ~15 GPa where most of our measurements are
taken, the variation between these extremes is generally less than 10% — much of the current
attention is focused on data above about 30 GPa and compressions greater than 4x. The three
curves are plotted in Supplementary Figure 2 to show the relationship of the QEOS Hugoniot
with these bounding curves. The difference between the QEOS Hugoniot and each of these
curves is taken as an estimate of EOS-related uncertainty in the compression data plotted in
Figure 6 of the main text, where this uncertainty has been added to the error in the VISAR and
hydrodynamic calculations. We note that most of our data are taken at compressions of 3.2,

where Supplementary Figure 2 suggests a range of pressure uncertainty from 13-19 GPa.



Analysis of x-ray scattering spectra

The recorded x-ray spectra were fit with a theoretical model that includes the spectral
contributions of ions, free electrons and bound electrons. The model is based on the Chihara

formula,
Sk, w) = |f (k) + q(R)|?S;i(k, ) + Z;See (k, w) + Zy, f dw'See(k, w — w")Ss(k, w")

This formula describes the scattering spectrum as a combination of elastic scattering (first term),
inelastic scattering from delocalized electrons (second term) and inelastic scattering from weakly
bound electrons, including bound-free transitions to the continuum. Z;and Z, denote the number

of delocalized (free) and weakly bound core electrons respectively.

The first term accounts for density correlations of electrons that follow the ion motion, including
core electrons (represented by the ion form factor f(k)) and the screening electrons (q(k)). At the
instrument resolutions obtained in our study, the ion-ion correlation function Sji(K,w) can be
approximated Sji(k,w) = Sii(K)(@). The static ion structure factor is calculated in the Debye-

Hiickel approximation®’.

The second term describes the density correlations of free electrons. This term is often
calculated in the random phase approximation (RPA), which assumes weak inter-particle
interactions. Improvements have been introduced to account for strong coupling effects in dense
matter in the form of the Born-Mermin approximation (BMA)'®. This approach introduces a
dynamic collision frequency v(w) using an ansatz suggested by Mermin'®. The collision
frequency is calculated in the Born approximation®’. Further improvements have been made by
introducing local field corrections (LFC)*'. Together, this BMA-LFC approach was shown to
greatly improve the description of plasmon dispersion in warm, dense matter??. We use it in all
of our analysis, although tests against RPA calculations show that the two models do not differ

significantly at the density and temperature conditions explored in our study.

The third term describes bound-bound and bound-free scattering processes through the term
See(k,@). There has been much recent work to improve the theoretical description of this term®*
2% which introduces significant model-dependence into the inelastic spectrum. In our case, we

are primarily concerned with the treatment of ionization potential depression (IPD) which can



introduce plasma-parameter-dependent energy shifts and changes in shape to the bound-free
component of the spectrum. In order to minimize the ambiguity of our fits, we compare
calculations using two different models for IPD - the Stewart-Pyatt (SP)?® and Ecker-Kréll

(EK)?" approaches. The results are plotted in Supplementary Figure 3.

In Supplementary Figure 3 (A), we show SP fits for ionizations of Z=0.15, 0.25 and 0.5 (solid
lines) as well as dotted lines for those conditions representing only the bound-free and elastic
scattering contributions. All fits were calculated for T¢=0.15 eV and p/p,=3.2. Relative to the
elastic scattering feature, the free-free scattering contribution grows much more rapidly with
increasing ionization than the bound-free component. While IPD models affect the overall shape
of the inelastic feature, this weak-scaling of the bound-free component with density means it has
only a limited effect on the electron density inferred from the measurement. A best fit of Z=0.15
is found.

In Supplementary Figure 3 (B), we show EK fits for the same conditions and ionizations of
Z=0.15 and 0.25. Dotted lines again correspond to bound-free and elastic scattering. In this case
the peak of the bound-free feature is shifted toward E, relative to the SP case, a result we
attribute to the much larger calculated lowering of the continuum in the case, AEgx=10.2 eV
compared with AEgp=2.1 eV in the Stewart-Pyatt case. Nevertheless, we find Z=0.15 fits the
spectrum best. The agreement in calculated density between these two cases gives us confidence
that our inferred electron density is correct, notwithstanding the model-dependence of the bound-
free feature.

We also tested the temperature dependence of the spectrum and found a very weak dependence
in the intensity of the inelastic feature relative to the elastic. This is illustrated in Supplementary
Figure 4 (A), where fits are shown for T,=0.15, 0.25 and 0.5 eV at Z=0.15 and p/po=3.2. Because
the scattering intensity is not a sensitive function of temperature, our stated T,=0.15 eV
measurement is only a rough estimate, albeit one that is consistent with forward scattering.
Consequently, Compton scattering is only sensitive to Z; uncertainties in T do not affect the

quoted values for Z.

Supplementary Figure 4 (B) shows the plasmon scattering data from Figure 4 of the main text
with fits corresponding to Z=0.15 and temperatures of T,=0.1, 0.15 and 0.2 eV. In this case, it is

found that the intensity of the elastic feature changes with temperature relative to the plasmon



feature, but that the spectral location of the plasmon feature is temperature insensitive. This is to
be expected at such low temperatures, where the thermal correction to the plasmon dispersion
relation is too small to play a role. As a result, we are confident that the downshifted plasmon
energy is a robust, first-principles measure of electron density.

The static structure factor of dense plasmas, particularly at small k-values in forward scattering
experiments, remains an important and challenging research problem®. Our fits at T=0.15 eV
are presented only as rough estimates that are model dependent, and are somewhat lower than the
DFT-MD results of order ~0.3 eV at this point on the Hugoniot. However, the inferred
ionization is insensitive to variations in temperature and consistent between the very different

forward and backward scattering regimes.

Hydrodynamic Simulations

Radiation hydrodynamic simulations were performed using the package HYDRA®’. The
simulations are three-temperature (electron, ion and radiative) under the assumption of local
thermodynamical equilibrium. The equation of state is similar to QEOS", with a Thomas-Fermi
model for ionization and opacities. The laser absorption is modeled with ray tracing, the
geometry is one-dimensional with a resolution of 0.25 pum. The equations for the multi-group
radiation transport are solved in the diffusive limit, as is the thermal electron conduction, where a

flux limiter of 0.05 is used.

We modeled the uncertainty in calculating the final compression by performing simulations for
20% deviations in laser intensity and taking bounding values from the relevant x-ray probe time.
Although changes in laser drive conditions can cause significant deviations at early times, the
shock decays to a similar set of plasma conditions at x-ray probe time. We note that the
calculated shock velocities are consistent with the analytical scaling for laser driven one-

dimensional shocks given in Ref. 30.

Simulation of lonization and Dissociation

We outline the theoretical background of fluid variational theory (FVT) and the framework of

density functional theory molecular dynamics (DFT-MD). Both methods were used to estimate



the dissociation degree a=Np/(Np+2Np,), with the number of deuterium atoms Np and deuterium
molecules Np, respectively, along the Hugoniot curve of deuterium, see®'. The results for « are

shown in Fig. 6 of the main text.

The FVT is a free energy minimization scheme for a mixture of hydrogen atoms and molecules,
evaluating the chemical reaction H, < H + H self-consistently (chemical models). The free
energy F of the system is calculated on the basis of the Gibbs-Bogolyubov inequality F < Fj +
(@ — @y), that states that F is less or equal the sum of the free energies of a reference system F
(here a hard sphere system) and the mean value of the difference of two interaction potentials
evaluated over the reference states. In our case the reference hard sphere potential @, and
effective two-particle potentials, namely the exponential-6 potentials @ (see Ref. 32 for the

molecules and Ref. 33 for the atoms) for the real system are used, see Ref. 34.

The equation of state (EOS) and « are direct outputs of the FVT calculation. Since the underlying
Hugoniot curve is based on DFT-MD calculations for deuterium, the FVT data have to be
mapped to it. Therefore we scaled the density of our FVT hydrogen EOS by a factor of 2, to
adjust it to deuterium. We then extracted the FVT EOS points with the respective (FVT)-a
according to the EOS points of the underlying DFT-MD Hugoniot curve.

In contrast to FVT, the DFT-MD framework is based on a strictly physical picture. Bound states
or other long-living correlations between the electrons and ions are not regarded as new species
as in the chemical picture. According to the Born-Oppenheimer approximation the treatment of
the ions is classical in the MD and the properties of the electron system are evaluated on the
quantum level using the DFT at finite temperatures™”.

36-38

For our simulations we use the VASP program package™ ". To calculate the Coulomb

interactions between the electrons and ions more efficiently, projector-augmented wave

39,40

potentials are used with a converged energy cutoff of 1200 eV.

The forces that act on the ions are derived via the Hellmann-Feynman theorem at each MD step.
This procedure is repeatedly performed in a cubic simulation box with periodic boundary
conditions for several thousand MD steps of 0.2 fs to 1 fs duration so that the total simulation
time amounts up to 8 ps. The ion temperature is controlled with a Nosé thermostat*'. The most

crucial approximation within the DFT is the choice of the exchange-correlation functional for



which we use the one of Perdew, Burke, and Ernzerhof (PBE)*, a parametrization of the

generalized gradient approximation (GGA).

We ensure convergence of our simulation runs with respect to the energy cutoff for the plane
wave basis set, the particle number and the k-point sets applied for the evaluation of the

Brillouin zone. In detail we used 256 atoms and the Baldereschi mean value point™.

The dissociation degree for each EOS point along the Hugoniot curve is estimated via the
coordination number K(7), a weighted integral over the pair correlation function gji(7) of the ions,

see Ref. 13:
N-1 " 12 I} ’
K(r) = TJ Antr'” gy (r)dr
0

N is the numer of simulated ions and ¥ the volume of the simulation box. Twice the value of
K(r) at the molecule peak, indicated by the dotted line at 0.741A in Supplementary Figure 5, is
equal to the number of ions bound to a molecule: 2K(7)=2Np,/( 2Npy+Np). Hence the relation
between the coordination number and the dissociation degree is o = 1 - 2K (7). Also shown in

Supplementary Figure 5 are gii(r) and K(7) for three EOS points along the Hugoniot curve.

The simulation box at 1000 K and 0.4 g cm™ is shown in Supplementary Figure 6 (A) with o=
0.0066. As is shown, all ions in the box are bound in molecules. The single ions at the edge are
due to the finite box. The respective molecule partner is found in the next box. A box
visualizing a much higher dissociation degree of ¢=0.427 at 4000 K and 0.6 g cm™ is shown in
Supplementary Figure 6 (B). Just about half of the ions are bound to molecules here, leading to a

lower molecule peak and a lower coordination number, see Supplementary Figure 5.
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